Definitions | f(a), X(e), ||as||, e  X, if b then t else f fi , , s = t, E(X), x:A B(x), es-interface-history(es; X; e), filter(P;l), is-query(In;isupdate;e), A, P  Q, x:A B(x), P & Q, x:A. B(x), ES, x:A. B(x), Type, AbsInterface(A), sys-antecedent(es;Sys), fifo-antecedent(es;Sys;f), input-forwarding{i:l}(es; Cmd; Sys; isupdate; In; f), loc(e), Id, adjacent(T;L;x;y), chain-consistent(f;chain), p-conditional(f; g), chain-config(es;Sys;chain), type List, b, left + right, P Q, E, {x:A| B(x)} , P  Q, P   Q, A c B, abstract-chain-replication, chain-replication-acks, t T, EState(T), a:A fp B(a), , strong-subtype(A;B), EqDecider(T), Unit, IdLnk, EOrderAxioms(E; pred?; info), kindcase(k; a.f(a); l,t.g(l;t) ), Knd, loc(e), kind(e), Msg(M), , val-axiom(E;V;M;info;pred?;init;Trans;Choose;Send;val;time), r s, e < e', , constant_function(f;A;B), SWellFounded(R(x;y)), , pred!(e;e'),  x,y. t(x;y), !Void(), x:A.B(x), Top, S T, suptype(S; T), first(e), <a, b>, pred(e), x.A(x),  x. t(x), f(x)?z, e c e', Outcome, #$n, A B, did-forward(es; Sys; f; e), False, e loc e' , hd(l), (x l), case b of inl(x) => s(x) | inr(y) => t(y), a < b, L1 L2, no_repeats(T;l), (e <loc e'), let x,y = A in B(x;y), t.1, f g, es-vartype(es; i; x), es-state(es; i), decl-state(ds), ma-state(ds), x dom(f), {T}, ff, inr x , tt, inl x , True, T, Dec(P), b | a, a ~ b, a b, a <p b, a < b, x f y, x L. P(x), ( x L.P(x)), y is f*(x), r < s, q-rel(r;x), l_disjoint(T;l1;l2), (e < e'), e<e'.P(e), e e'.P(e), e<e'. P(e), e e'.P(e), e [e1,e2).P(e), e [e1,e2).P(e), e [e1,e2].P(e), e [e1,e2].P(e), e (e1,e2].P(e), SqStable(P), a =!x:T. Q(x), InvFuns(A;B;f;g), Inj(A;B;f), IsEqFun(T;eq), Refl(T;x,y.E(x;y)), Sym(T;x,y.E(x;y)), Trans(T;x,y.E(x;y)), AntiSym(T;x,y.R(x;y)), Connex(T;x,y.R(x;y)), CoPrime(a,b), Ident(T;op;id), Assoc(T;op), Comm(T;op), Inverse(T;op;id;inv), BiLinear(T;pl;tm), IsBilinear(A;B;C;+a;+b;+c;f), IsAction(A;x;e;S;f), Dist1op2opLR(A;1op;2op), fun_thru_1op(A;B;opa;opb;f), FunThru2op(A;B;opa;opb;f), Cancel(T;S;op), monot(T;x,y.R(x;y);f), IsMonoid(T;op;id), IsGroup(T;op;id;inv), IsMonHom{M1,M2}(f), a b, IsIntegDom(r), IsPrimeIdeal(R;P) |